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Penalty function approach to recurrent neural network dynamics
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The Hopfield dynamics for recurrent neural networks minimizes a certain quadratic form on the unit hyper-
cube. | show here how the dynamical system can be derived from a standard method of optimization theory. |
use the method to give a precise meaning to nonsymmetric interactions, and | discuss the possibility of
introducing other types of dynamidsS1063-651X97)11407-9

PACS numbdps): 87.10+¢€, 02.60.Pn

I. INTRODUCTION In both methods a numerical solution is found for the
unconstrained minimum of the auxiliary function for a given
There are many connections between statistical mechanigs, which is then progressively decreased. The barrier func-
and optimization theory, and new ones are discovered all theon method has the advantage of having an auxiliary func-
time. For instance, Barahon] recently showed how Ising tion with continuous derivatives, but it needs a starting point
problems can be solved numerically with a variant of linearinside the feasible region. The penalty function method has
programming. Neural networks belong to both disciplinesno such requirement, but the auxiliary function has a discon-
and so it should not be surprising to find even deeper continuous derivative on the boundary of the feasible region.
nections here. This paper deals with the dynamics of recur- Here | use a variation of both methods: LEE(x) be a
rent neural networks and its purpose is to show that th@on-negative continuous function defined for all r&also
Hopfield dynamics[2,3] can be derived from a standard that it is a monotonically increasing function gffor all x,
method of optimization theory. | use this method to under-F4(0)=1 for all B, and such that, wheng— +x,
stand both the origin of the algorithmic stability of different 74(x)—0 if x<0 andFj(x) — + < if x>0. One such func-
kinds of network dynamics and the dynamics associated withion is 75(x) =e”*, whereg is a positive real number. Then

asymmetric interactions. | also discuss the possibility of in-replacefy(x,, ... xy) with the auxiliary function
troducing other types of dynamics.
The Hopfield dynamics minimizes a certain quadratic fa(Xy, .. Xn)=TFo(Xy, ... XN)
form on the{—1,1} N-dimensional hypercube; i.e., it corre- K=N
sponds to a problem of constrained optimization.
Now consider the general problem of minimizing a con- * gl Fp@xa, - x). ()
tinuous functionfg(xy, ... Xy) Subject to a set of con-
straints of the form{gy(xy, . .. Xn)<O}k=1n: While there  This function gives a small penalty inside the feasible region

are several good numerical algorithms to minimize an unand a large penalty outside, it is everywhere continuous, and
constrained function, after the introduction of the constraintdt does not require a starting point inside the feasible region.
these methods cannot be used as they stand and the problés 8 is made larger and larger the penalty inside the feasible
usually becomes much harder. There are two straightforwartegion becomes vanishingly small, while outside it grows
ways to convert the problem back to unconstraiféfl In  faster and faster. This modified penalty function method will
the barrier function method the functidip(x,, ... Xy) is  be used now to rederive the Hopfield dynamics.
replaced by the auxiliary function
N Il. DERIVATION OF THE DYNAMICS FOR {-1,1}

INTEGER PROGRAMMING PROBLEMS
foXe, - XN TR dGXe, - ) (D) _ _

k=1 In general{—1,1} integer programming problems one
tries to find the vertex of thé—1,1} N-dimensional hyper-

where ¢(y) is a function of one variable that is both con- cype that minimizes a certain functidp(x;, . . . Xy). If we
tinuous and non-negative ovely:y<0} and such that relax the problem and search instead for solutions that satisfy
limy_o-¢(y)=+%=, andu is a non-negative parameter.  the constraints- 1<x,<1, we can take the penalty function
In the penalty function method the function
fo(Xq, ... Xn) IS replaced instead by the auxiliary function k=N
. 2 G B), @

fo(Xg, .- Xn)t+ max{ 0,gx(Xy, ... Xn)]. (2 . .
oXa v Mgl 108k, Wl @) where G, (x; 8) are even, concave-up functions, with con-

tinuous derivatives, and such thaG,(*=1;8)=1,
G(x;8)—0 for B—+o if |x|<1, and Gy(x;B)— +
*Electronic address: milotti@trieste.infn.it for B—+x if [x|>1 (see Fig. L If F(x;8)=
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FIG. 1. Graphical representation of the functiddgx,,3): As

B grows theG,’s look more and more like square wells.

(d/dX)Gy(x;B), then Fk’l(x;ﬂ) is an increasing sigmoid
function (see Fig. 2 The auxiliary function for the minimi-

zation problem is

k=N
fa(Xq, - Xn)=Fo(Xa, - .. ,XN)+k§=:l Gy(X¢:B), (5

so that one must solve the system of equations

J J
(9_kaﬂ(xly ce ,XN):a_kao(Xl, <o XN HFR(X; B) =0,

(6)
which can also be rearranged in the form
1 d
Xk=Fy 7| — &_kao(xly C XN B %
So, for instance, if we take the linear function
k=N
folxe, - )= 2, (8t by, ®

then theuniquesolution is guaranteed to lie on a vertiéq,
and

xk=—Fk’l(ak;ﬂ)ﬁ_,_;w—sgr(ak). C)

large B

—— 1

FL(x:B)
1

Xk

FIG. 2. Graphical representation of the functidﬁ@l(xk,,[}):
As B grows theF;l’s approach a step function.
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In general formuld?) is not closed, but rather can be used
as a recursive formula fot,:

Jd
Xe(M+1)= Fkl( = ——fo(xa(m), ... .XN(m)):B]-

an
(10
If we let F(x;B)=(1/B)arctantx, then
1 1
G (x;8)= B xarctaanEIn(l—xz) (11)

(which satisfies the conditions given above in a rather more
restrictive way, but is still a useful penalty functipand we
obtain the conventional form

Jd
Xi(m+ 1)=tanr{ _'Ba_xkf‘)(Xl(m)' - ,xN(m))].
12

Now if we take

1 N N
fO(Xl! e ’XN): EijE:l Tinin+i§1 IJX] y (13)

with T;;=T;; andT;;=0 and wherd; is an external input,
we recover the discrete Hopfield dynamj&s:

i=N
X(m+1)=F*! —J_Z,l T (m+1;B). (14

Other combinatorial problems can be treated with the for-
malism introduced here. For instance, the maximum clique
problem(see[6] for a review can be shown to be equivalent
to the problem of minimizing the quadratic forrTAx so
that xe {0,}N and A=Ag—1, whereAg is the adjacency
matrix of a graphG. A simple auxiliary function for this
minimization problem is

N N
fr(X1, ... ,XN)Ij%l XX+ kgl Gi(x¢;B); (19

then, proceeding as before, one easily obtains the limiting
form of the discrete dynamics

N

1
Xe(m+1)= E[ l—sgr{ > (ajk+ay))x;(m)

=1

] ., (16)

and the solution of the maximum clique problem corre-
sponds to one of the stable states of Ed).

Ill. ALGORITHMIC STABILITY

Now let us see how all this can shed some light on two
old problems in Hopfield theory, namely, algorithmic stabil-
ity of the iterative solutions and the meaning of nonsymmet-
ric T's, and let us consider the algorithmic stability problem
first.

The update formuld14) can be implemented both in a
synchronous and in an asynchronous way: It turns out that
the synchronous updates have the tendency to produce oscil-
lations more frequently than the asynchronous upd@di@s
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and references therginMoreover, it is quite clear from the fo(X1, - oo XNIY1r - - - YN)
discussion above that the usual recursive forngi#t has no
special feature apart from being a very simple and obvious 1 N N

choice: We could as well take E¢) and write =§i121 Tiniyj+JZl (1% +3;Y)),

(22)

, wherel; andJ; are permanent external inputs, then the aux-
iliary function is
17

d I=N
Fk(xk;’B)z_aT(ka(xl- . !XN)=_(jEl TiiXj+ 1k

fa(Xe, o XnoYas - - YN =Fo(Xas oo XNy, - YD)
and then, assuming that eactf may change by small K=N
amountgso that it is not forced to lie on or near a hypercube .
verteX and looking again for a recursive solution, we obtain + kzl GilX: B), (22

dF (x(1): B) and the sefxy, ... XNiY1, - - - YN} that minimizes Eq(22)
Fk(xk(t+At);,B)ka(xk(t);,B)JrT’At must solve the system of equations
. 1 N
=N
B _(]2 TiXj (D + 1 (18) (Ei; Tt |+ Fulxi )20, @3
=1
N
1
or, equivalently, (Ejzl TyjXj+ Ik | +Fi(yk; 8)=0. (24)
dF(X(1); B) i=N Therefore, we obtain the recursive formulas
_TAt:Fk(Xk(t);ﬂ)+;1 Tijj(t)+|k, 1 N
19 xk(m+1)=F[1(—§jEl Tjij(m)+|k;,3>, (25

which is just the continuous dynamics defined 3. 1 N
From the discussion above we see t_hat the different rug- y(m+1)= |:k1< - 52 Tijj(m)+Jk;ﬂ)- (26)
gedness of the three types of dynamics is probably due to the i=1

different step sizes, which are such that . . . L .
A nonsymmetric dynamics which minimizes a Liapunov

function is thus possible for two sets of paired variables:

stepsizécontinuous updaje These variables may represent the state of a system at “odd”
< stepsizeasync. discrete update andt“even” times, or they may actually be related to a split
system.

< stepsizésync. discrete updake
V. OTHER KINDS OF DYNAMICS

since in the continuous dynamics the variables may change |, the previous sections | have often assumed that the
by small amountsjust like in the “interior point methods”  ayirema of the functiorf, lie on the vertices of the hyper-
of optimization theory{8]), while in both kinds of discrete . pe Obviously this is not always the case, and with the

dynamics they must jump nearly from vertex to vertex of thesgymed relaxation of the constraints the method may lead to
hypercube. However, the step size is usually smaller for the,rema that are locatédsidethe hypercube. However, it is
asynchronous update, since in this case the jump is always {Q,ssible to modify the method so that only the surface or the

one adjacent vertex, while in the case of a synchrorous erices of the hypercube are selected by the penalty func-
paralle) update, the jump may bring the system to a farawaytion; for instance, the penalty function
nonadjacent vertex.

k=N k=N
2n
coshn X —1 2
IV. NONSYMMETRIC DYNAMICS k§=:1 { (k§=:1 k ) @7
Now let us turn to matrice§ which are not symmetric: selects the surface of the hypercube, while
Then, using Eq(13) once again, instead of Eql4), we KN
obtain
> [Og—1)2+1]" (28)
k=1
Ry
X(m+1)=F Y - (Tii+ T X (M) + 1y 81, selects the vertices of the hypercutiee penalty function
2{31 parameten is in both cases a positive integer
(20) Penalty functions such as these do not lead to recursive

formulas like Eq.(14), and do not have a limiting dynamics:
so that the resulting dynamics is still symmetric; however, ifTo see the difficulties involved consider the penalty function
we take (28), so that the condition for the extrema becomes
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9 ) ) L grows, the allowed regionghe neighborhoods of the verti-
——fo(Xq, -+ Xn) = —4nx (X — D[ (xg—1)+1]"" " ces of the hypercubddecome disconnected.

Xy
(29)
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