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Penalty function approach to recurrent neural network dynamics
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The Hopfield dynamics for recurrent neural networks minimizes a certain quadratic form on the unit hyper-
cube. I show here how the dynamical system can be derived from a standard method of optimization theory. I
use the method to give a precise meaning to nonsymmetric interactions, and I discuss the possibility of
introducing other types of dynamics.@S1063-651X~97!11407-6#

PACS number~s!: 87.10.1e, 02.60.Pn
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I. INTRODUCTION

There are many connections between statistical mecha
and optimization theory, and new ones are discovered all
time. For instance, Barahona@1# recently showed how Ising
problems can be solved numerically with a variant of line
programming. Neural networks belong to both disciplin
and so it should not be surprising to find even deeper c
nections here. This paper deals with the dynamics of re
rent neural networks and its purpose is to show that
Hopfield dynamics@2,3# can be derived from a standar
method of optimization theory. I use this method to und
stand both the origin of the algorithmic stability of differe
kinds of network dynamics and the dynamics associated w
asymmetric interactions. I also discuss the possibility of
troducing other types of dynamics.

The Hopfield dynamics minimizes a certain quadra
form on the$21,1% N-dimensional hypercube; i.e., it corre
sponds to a problem of constrained optimization.

Now consider the general problem of minimizing a co
tinuous function f 0(x1 , . . . ,xN) subject to a set of con
straints of the form$gk(x1 , . . . ,xN)<0%k51,N : While there
are several good numerical algorithms to minimize an
constrained function, after the introduction of the constrai
these methods cannot be used as they stand and the pro
usually becomes much harder. There are two straightforw
ways to convert the problem back to unconstrained@4#: In
the barrier function method the functionf 0(x1 , . . . ,xN) is
replaced by the auxiliary function

f 0~x1 , . . . ,xN!1m (
k51

k5N

f„gk~x1 , . . . ,xN!…, ~1!

wheref(y) is a function of one variable that is both co
tinuous and non-negative over$y:y,0% and such that
limy→02f(y)51`, andm is a non-negative parameter.

In the penalty function method the functio
f 0(x1 , . . . ,xN) is replaced instead by the auxiliary functio

f 0~x1 , . . . ,xN!1m (
k51

k5N

max@0,gk~x1 , . . . ,xN!#. ~2!
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In both methods a numerical solution is found for t
unconstrained minimum of the auxiliary function for a give
m, which is then progressively decreased. The barrier fu
tion method has the advantage of having an auxiliary fu
tion with continuous derivatives, but it needs a starting po
inside the feasible region. The penalty function method
no such requirement, but the auxiliary function has a disc
tinuous derivative on the boundary of the feasible region

Here I use a variation of both methods: LetFb(x) be a
non-negative continuous function defined for all realx, so
that it is a monotonically increasing function ofb for all x,
Fb(0)51 for all b, and such that, whenb→1`,
Fb(x)→0 if x,0 andFb(x)→1` if x.0. One such func-
tion isFb(x)5ebx, whereb is a positive real number. The
replacef 0(x1 , . . . ,xN) with the auxiliary function

f b~x1 , . . . ,xN!5 f 0~x1 , . . . ,xN!

1 (
k51

k5N

Fb„gk~x1 , . . . ,xN!…. ~3!

This function gives a small penalty inside the feasible reg
and a large penalty outside, it is everywhere continuous,
it does not require a starting point inside the feasible regi
As b is made larger and larger the penalty inside the feas
region becomes vanishingly small, while outside it gro
faster and faster. This modified penalty function method w
be used now to rederive the Hopfield dynamics.

II. DERIVATION OF THE DYNAMICS FOR ˆ21,1‰
INTEGER PROGRAMMING PROBLEMS

In general $21,1% integer programming problems on
tries to find the vertex of the$21,1% N-dimensional hyper-
cube that minimizes a certain functionf 0(x1 , . . . ,xN). If we
relax the problem and search instead for solutions that sa
the constraints21<xk<1, we can take the penalty functio

(
k51

k5N

Gk~xk ;b!, ~4!

whereGk(x;b) are even, concave-up functions, with co
tinuous derivatives, and such thatGk(61;b)51,
Gk(x;b)→0 for b→1` if uxu,1, and Gk(x;b)→1`
for b→1` if uxu.1 ~see Fig. 1!. If Fk(x;b)5
1266 © 1997 The American Physical Society
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(d/dx)Gk(x;b), then Fk
21(x;b) is an increasing sigmoid

function ~see Fig. 2!. The auxiliary function for the minimi-
zation problem is

f b~x1 , . . . ,xN!5 f 0~x1 , . . . ,xN!1 (
k51

k5N

Gk~xk ;b!, ~5!

so that one must solve the system of equations

]

]xk
f b~x1 , . . . ,xN!5

]

]xk
f 0~x1 , . . . ,xN!1Fk~xk ;b!50,

~6!

which can also be rearranged in the form

xk5Fk
21S 2

]

]xk
f 0~x1 , . . . ,xN!;b D . ~7!

So, for instance, if we take the linear function

f 0~x1 , . . . ,xN!5 (
k51

k5N

~akxk1bk!, ~8!

then theuniquesolution is guaranteed to lie on a vertex@5#,
and

xk52Fk
21~ak ;b!

→
b→1`

2sgn~ak!. ~9!

FIG. 1. Graphical representation of the functionsGk(xk ,b): As
b grows theGk’s look more and more like square wells.

FIG. 2. Graphical representation of the functionsFk
21(xk ,b):

As b grows theFk
21’s approach a step function.
In general formula~7! is not closed, but rather can be use
as a recursive formula forxk :

xk~m11!5Fk
21H 2

]

]xk
f 0„x1~m!, . . . ,xN~m!…;bJ .

~10!

If we let Fk(x;b)5(1/b)arctanhx, then

Gk~x;b!5
1

bFxarctanhx1
1

2
ln~12x2!G ~11!

~which satisfies the conditions given above in a rather m
restrictive way, but is still a useful penalty function!, and we
obtain the conventional form

xk~m11!5tanhH 2b
]

]xk
f 0„x1~m!, . . . ,xN~m!…J .

~12!

Now if we take

f 0~x1 , . . . ,xN!5
1

2 (
i , j51

N

Ti j xixj1(
j51

N

I jxj , ~13!

with Ti j5Tji andTii50 and whereI j is an external input,
we recover the discrete Hopfield dynamics@3#:

xk~m11!5Fk
21X2 (

j51

j5N

Tk jxj~m!1I k ;bC. ~14!

Other combinatorial problems can be treated with the f
malism introduced here. For instance, the maximum cliq
problem~see@6# for a review! can be shown to be equivalen
to the problem of minimizing the quadratic formxTAx so
that xP$0,1%N and A5AG2I , whereAG is the adjacency
matrix of a graphG. A simple auxiliary function for this
minimization problem is

f n~x1 , . . . ,xN!5 (
j ,k51

N

ajkxjxk1 (
k51

N

Gk~xk ;b!; ~15!

then, proceeding as before, one easily obtains the limi
form of the discrete dynamics

xk~m11!5
1

2H 12sgnF (
j51

N

~ajk1ak j!xj~m!G J , ~16!

and the solution of the maximum clique problem corr
sponds to one of the stable states of Eq.~16!.

III. ALGORITHMIC STABILITY

Now let us see how all this can shed some light on t
old problems in Hopfield theory, namely, algorithmic stab
ity of the iterative solutions and the meaning of nonsymm
ric T’s, and let us consider the algorithmic stability proble
first.

The update formula~14! can be implemented both in
synchronous and in an asynchronous way: It turns out
the synchronous updates have the tendency to produce o
lations more frequently than the asynchronous updates~@7#
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and references therein!. Moreover, it is quite clear from the
discussion above that the usual recursive formula~14! has no
special feature apart from being a very simple and obvi
choice: We could as well take Eq.~6! and write

Fk~xk ;b!52
]

]xk
f 0~x1 , . . . ,xN!52S (

j51

j5N

Tk jxj1I kD ,
~17!

and then, assuming that eachxk may change by smal
amounts~so that it is not forced to lie on or near a hypercu
vertex! and looking again for a recursive solution, we obta

Fk„xk~ t1Dt !;b…'Fk„xk~ t !;b…1
dFk„xk~ t !;b…

dt
Dt

52S (
j51

j5N

Tk jxj~ t !1I kD ~18!

or, equivalently,

2
dFk„xk~ t !;b…

dt
Dt5Fk„xk~ t !;b…1 (

j51

j5N

Tk jxj~ t !1I k ,

~19!

which is just the continuous dynamics defined in@3#.
From the discussion above we see that the different r

gedness of the three types of dynamics is probably due to
different step sizes, which are such that

stepsize~continuous update!

,stepsize~async. discrete update!

,stepsize~sync. discrete update!,

since in the continuous dynamics the variables may cha
by small amounts~just like in the ‘‘interior point methods’’
of optimization theory@8#!, while in both kinds of discrete
dynamics they must jump nearly from vertex to vertex of t
hypercube. However, the step size is usually smaller for
asynchronous update, since in this case the jump is alwa
one adjacent vertex, while in the case of a synchronous~or
parallel! update, the jump may bring the system to a faraw
nonadjacent vertex.

IV. NONSYMMETRIC DYNAMICS

Now let us turn to matricesT which are not symmetric
Then, using Eq.~13! once again, instead of Eq.~14!, we
obtain

xk~m11!5Fk
21S 2

1

2(j51

j5N

~Tk j1Tjk!xj~m!1I k ;b D ,
~20!

so that the resulting dynamics is still symmetric; however
we take
s
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f 0~x1 , . . . ,xN ;y1 , . . . ,yN!

5
1

2 (
i , j51

N

Ti j xiyj1(
j51

N

~ I jxj1Jjyj !,

~21!

whereI j andJj are permanent external inputs, then the au
iliary function is

f b~x1 , . . . ,xN ;y1 , . . . ,yN!5 f 0~x1 , . . . ,xN ;y1 , . . . ,yN!

1 (
k51

k5N

Gk~xk ;b!, ~22!

and the set$x1 , . . . ,xN ;y1 , . . . ,yN% that minimizes Eq.~22!
must solve the system of equations

S 12(j51

N

Tjkyj1I kD 1Fk~xk ;b!50, ~23!

S 12(j51

N

Tk jxj1JkD 1Fk~yk ;b!50. ~24!

Therefore, we obtain the recursive formulas

xk~m11!5Fk
21S 2

1

2(j51

N

Tjkyj~m!1I k ;b D , ~25!

yk~m11!5Fk
21S 2

1

2(j51

N

Tk jxj~m!1Jk ;b D . ~26!

A nonsymmetric dynamics which minimizes a Liapuno
function is thus possible for two sets of paired variabl
These variables may represent the state of a system at ‘‘o
and ‘‘even’’ times, or they may actually be related to a sp
system.

V. OTHER KINDS OF DYNAMICS

In the previous sections I have often assumed that
extrema of the functionf 0 lie on the vertices of the hyper
cube. Obviously this is not always the case, and with
assumed relaxation of the constraints the method may lea
extrema that are locatedinsidethe hypercube. However, it is
possible to modify the method so that only the surface or
vertices of the hypercube are selected by the penalty fu
tion; for instance, the penalty function

(
k51

k5N

coshFnS (
k51

k5N

xk
2n21D G ~27!

selects the surface of the hypercube, while

(
k51

k5N

@~xk
221!211#n ~28!

selects the vertices of the hypercube~the penalty function
parametern is in both cases a positive integer!.

Penalty functions such as these do not lead to recur
formulas like Eq.~14!, and do not have a limiting dynamics
To see the difficulties involved consider the penalty functi
~28!, so that the condition for the extrema becomes



c

-

-

56 1269BRIEF REPORTS
]

]xk
f 0~x1 , . . . ,xN!524nxk~xk

221!@~xk
221!11#n21.

~29!

Now a limiting dynamics can no longer be defined, sin
the product (xk

221)@(xk
221)11#n21 approaches the form

03` asn→`. Geometrically the reason is that now, asn
e

grows, the allowed regions~the neighborhoods of the verti
ces of the hypercube! become disconnected.
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